Read main article: Cribbage
Some cribbage statistics are
Alice (dealer) |
|
---|---|
Bob |
Player | Card | Cumulative | Score | Announced |
---|---|---|---|---|
Bob | 10 | "ten" | ||
Alice | 20 | "twenty" | ||
Bob | 30 | 3 points (run) | "thirty" | |
Alice | 1 point to Bob (30 for one) | "go" | ||
Alice | 7 | "seven" | ||
Bob | 9 | "nine" | ||
Alice | 11 | 2 points | "eleven for two" | |
Bob | 13 | 6 points | "thirteen for six" | |
Alice | 15 | 15 points (double pair royal, fifteen, last card) |
"fifteen for fifteen" |
If a player holds a 5 in their hand, that player is guaranteed at least two points, as shown below:
A 0-point hand must have five distinct cards without forming a run or a fifteen combination. If such a hand includes a 5, it cannot hold any face cards. It also cannot include both an A and a 9; both a 2 and an 8; both a 3 and a 7; or both a 4 and a 6. Since four more cards are needed, exactly one must be taken from each of those sets. Let us run through the possible choices:
Therefore every set of 5 cards including a 5 has a pair, a run, or a fifteen, and thus at least two points.
It is also true that holding both a 2 and a 3, or an A and a 4 (pairs of cards adding up to five) also guarantees a non-zero score:
Scoring Breakdown
Score | Number of hands (out of 12,994,800) |
Percentage of hands | Percentage of hands at least as high |
---|---|---|---|
0 | 1009008 | 7.7647 | 100 |
1 | 99792 | 0.7679 | 92.2353 |
2 | 2813796 | 21.6532 | 91.4674 |
3 | 505008 | 3.8862 | 69.8142 |
4 | 2855676 | 21.9755 | 65.928 |
5 | 697508 | 5.3676 | 43.9525 |
6 | 1800268 | 13.8538 | 38.5849 |
7 | 751324 | 5.7817 | 24.7311 |
8 | 1137236 | 8.7515 | 18.9494 |
9 | 361224 | 2.7798 | 10.1979 |
10 | 388740 | 2.9915 | 7.4181 |
11 | 51680 | 0.3977 | 4.4266 |
12 | 317340 | 2.4421 | 4.0289 |
13 | 19656 | 0.1513 | 1.5868 |
14 | 90100 | 0.6934 | 1.4355 |
15 | 9168 | 0.0706 | 0.7421 |
16 | 58248 | 0.4482 | 0.6715 |
17 | 11196 | 0.0862 | 0.2233 |
18 | 2708 | 0.0208 | 0.1371 |
19 | 0 | 0 | 0.1163 |
20 | 8068 | 0.0621 | 0.1163 |
21 | 2496 | 0.0192 | 0.0542 |
22 | 444 | 0.0034 | 0.0350 |
23 | 356 | 0.0027 | 0.0316 |
24 | 3680 | 0.0283 | 0.0289 |
25 | 0 | 0 | 0.0006 |
26 | 0 | 0 | 0.0006 |
27 | 0 | 0 | 0.0006 |
28 | 76 | 0.0006 | 0.0006 |
29 | 4 | 0.00003 | 0.00003 |
Note that these statistics do not reflect frequency of occurrence in 5 or 6-card play. For 6-card play the mean for non-dealer is 7.8580 with standard deviation 3.7996, and for dealer is 7.7981 and 3.9082 respectively. The means are higher because the player can choose those four cards that maximize their point holdings. For 5-card play the mean is about 5.4.
Slightly different scoring rules apply in the crib - only 5-point flushes are counted, in other words you need to flush all cards including the turn-up and not just the cards in the crib. Because of this, a slightly different distribution is observed:
Scoring Breakdown (crib/box hands only)
Score | Number of hands (+/- change from non-crib distribution) (out of 12,994,800) |
Percentage of hands | Percentage of hands at least as high |
---|---|---|---|
0 | 1022208 (+13200) | 7.8663 | 100 |
1 | 99792 (0) | 0.7679 | 92.1337 |
2 | 2839800 (+26004) | 21.8534 | 91.3658 |
3 | 508908 (+3900) | 3.9162 | 69.5124 |
4 | 2868960 (+13284) | 22.0778 | 65.5962 |
5 | 703496 (+5988) | 5.4137 | 43.5184 |
6 | 1787176 (-13092) | 13.7530 | 38.1047 |
7 | 755320 (+3996) | 5.8125 | 24.3517 |
8 | 1118336 (-18900) | 8.6060 | 18.5393 |
9 | 358368 (-2856) | 2.7578 | 9.9332 |
10 | 378240 (-10500) | 2.9107 | 7.1755 |
11 | 43880 (-7800) | 0.3377 | 4.2648 |
12 | 310956 (-6384) | 2.3929 | 3.9271 |
13 | 16548 (-3108) | 0.1273 | 1.5342 |
14 | 88132 (-1968) | 0.6782 | 1.4068 |
15 | 9072 (-96) | 0.0698 | 0.7286 |
16 | 57288 (-960) | 0.4409 | 0.6588 |
17 | 11196 (0) | 0.0862 | 0.2179 |
18 | 2264 (-444) | 0.0174 | 0.1318 |
19 | 0 (0) | 0 | 0.1144 |
20 | 7828 (-240) | 0.0602 | 0.1144 |
21 | 2472 (-24) | 0.0190 | 0.0541 |
22 | 444 (0) | 0.0034 | 0.0351 |
23 | 356 (0) | 0.0027 | 0.0317 |
24 | 3680 (0) | 0.0283 | 0.0289 |
25 | 0 (0) | 0 | 0.0006 |
26 | 0 (0) | 0 | 0.0006 |
27 | 0 (0) | 0 | 0.0006 |
28 | 76 (0) | 0.0006 | 0.0006 |
29 | 4 (0) | 0.00003 | 0.00003 |
As above, these statistics do not reflect the true distributions in 5 or 6 card play, since both the dealer and non-dealer will discard tactically in order to maximise or minimise the possible score in the crib/box.
Two cards |
Three cards |
Four cards | Five cards | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X5 96 87 |
X4A X32 95A 942 933 |
86A 852 843 77A 762 |
753 744 663 654 555 |
X3AA X22A 94AA 932A 9222 85AA |
842A 833A 8322 76AA 752A 743A |
7422 7332 662A 653A 6522 644A |
6432 6333 554A 5532 5442 5433 4443 |
X2AAA 93AAA 922AA 84AAA 832AA 8222A 75AAA |
742AA 733AA 7322A 72222 66AAA 652AA 643AA |
6422A 6332A 63222 553AA 5522A 544AA 5432A |
54222 5333A 53322 4442A 4433A 44322 43332 |
Note: "X" indicates a card scoring ten: 10, J, Q or K |
If both the hand and the crib are considered as a sum (and both are drawn at random, rather than formed with strategy as is realistic in an actual game setting) there are 2,317,817,502,000 (2.3 trillion) 9-card combinations.
Scoring Breakdown
Score | Number of hand-crib pairs (out of 2,317,817,502,000) |
Percentage of hand-crib pairs | Percentage of hand-crib pairs at least as high |
---|---|---|---|
0 | 14485964652 | 0.624983 | 100 |
1 | 3051673908 | 0.131662 | 99.375017 |
2 | 80817415668 | 3.486789 | 99.243356 |
3 | 23841719688 | 1.028628 | 95.756566 |
4 | 190673505252 | 8.226424 | 94.727938 |
5 | 70259798952 | 3.031291 | 86.501514 |
6 | 272593879188 | 11.7608 | 83.470222 |
7 | 121216281624 | 5.22976 | 71.709422 |
8 | 290363331432 | 12.527446 | 66.479663 |
9 | 151373250780 | 6.530853 | 53.952217 |
10 | 254052348948 | 10.960843 | 47.421364 |
11 | 141184445960 | 6.091267 | 36.460521 |
12 | 189253151324 | 8.165145 | 30.369254 |
13 | 98997926340 | 4.27117 | 22.204109 |
14 | 127164095564 | 5.486372 | 17.932939 |
15 | 59538803512 | 2.568744 | 12.446567 |
16 | 77975659056 | 3.364185 | 9.877823 |
17 | 32518272336 | 1.402969 | 6.513638 |
18 | 42557293000 | 1.836093 | 5.110669 |
19 | 17654681828 | 0.761694 | 3.274576 |
20 | 22185433540 | 0.957169 | 2.512881 |
21 | 8921801484 | 0.384923 | 1.555712 |
22 | 10221882860 | 0.441013 | 1.17079 |
23 | 4016457976 | 0.173286 | 0.729776 |
24 | 5274255192 | 0.227553 | 0.55649 |
25 | 1810154696 | 0.078097 | 0.328938 |
26 | 2305738180 | 0.099479 | 0.25084 |
27 | 750132024 | 0.032364 | 0.151361 |
28 | 1215878408 | 0.052458 | 0.118998 |
29 | 401018276 | 0.017302 | 0.06654 |
30 | 475531940 | 0.020516 | 0.049238 |
31 | 184802724 | 0.007973 | 0.028722 |
32 | 233229784 | 0.010062 | 0.020749 |
33 | 82033028 | 0.003539 | 0.010686 |
34 | 71371352 | 0.003079 | 0.007147 |
35 | 19022588 | 0.000821 | 0.004068 |
36 | 44459120 | 0.001918 | 0.003247 |
37 | 9562040 | 0.000413 | 0.001329 |
38 | 10129244 | 0.000437 | 0.000916 |
39 | 1633612 | 0.00007 | 0.000479 |
40 | 5976164 | 0.000258 | 0.000409 |
41 | 1517428 | 0.000065 | 0.000151 |
42 | 600992 | 0.000026 | 0.000085 |
43 | 127616 | 0.000006 | 0.00006 |
44 | 832724 | 0.000036 | 0.000054 |
45 | 222220 | 0.00001 | 0.000018 |
46 | 42560 | 0.000002 | 0.000009 |
47 | 24352 | 0.000001 | 0.000007 |
48 | 119704 | 0.000005 | 0.000006 |
49 | 6168 | 0 | 0 |
50 | 384 | 0 | 0 |
51 | 0 | 0 | 0 |
52 | 4320 | 0 | 0 |
53 | 288 | 0 | 0 |